
COMPLEX ANALYSIS AND RIEMANN SURFACES

KEATON QUINN

1. A review of complex analysis

Preliminaries. The complex numbers may be constructed as C = R[x]/(x2 + 1).
Since they are a field extension of the reals they form a vector space over R of
dimension 2. The Galois group of C/R has size two, with the nontrivial element
σ : C→ C interchanging the two adjoined roots of x2 + 1. that is σ(i) = −i where
i is a solution to x2 + 1 = 0. The action of σ on an element of C is usually written
σ(z) = z̄ and called complex conjugation.

Given a vector space V over the complex numbers, we can form the conjugate
vector space V̄ whose set and addition is identical to that of V but whose scalar
multiplication is given by z ∗ v = z̄ · v, where · is scalar multiplication on V and ∗
that of V̄ . Focusing on the 1-dimensional complex vector space C, we see that we
actually have two copies of the complex plane C and C̄ depending on which root of
x2 + 1 we choose to be called i.

Since 1 is a complex basis, 1 and i form a real basis for C. So, for each z ∈ C
there exists unique x and y in R so that z = x + iy. Multiplication by a complex
number a+ ib is a linear function given by

M(z) = (a+ ib)(x+ iy) = ax− by + i(ay + bx).

Since M(1) = a+ ib and M(i) = −b+ ia we have the matrix representation of the
real linear map M in the basis (1, i) is given by

M =

(
a −b
b a

)
.

Notice that det(M) = a2 + b2 = |a + ib|2 implies M is invertible provided z 6= 0.
This tells us we have an embedding of the multiplicative group of complex numbers
into GL(2,R). Multiplication by i is especially important; it is given by

J =

(
0 −1
1 0

)
.

Lemma. Let M : C→ C be a linear map. Then

M(z) = αz + βz̄

for two complex numbers α and β.

Proof. Since M(x+iy) = xM(1)+M(i)y and since x = (z+ z̄)/2 and y = (z− z̄)/2i
we have

M(z) =

(
M(1)− iM(i)

2

)
z +

(
M(1) + iM(i)

2

)
z̄.

�
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For M(z) = αz + βz̄,

• if α and β are both nonzero then M is only real linear C→ C.
• If β = 0, then M is a complex linear map C→ C.
• If α = 0, then M is an complex antilinear map C→ C, which is equivalent

to being a complex linear map C→ C̄.

In this sense we say that a linear map is complex linear if it is independent of
z̄. If M is a complex linear map C → C. Then M(z) = zM(1), so M is given
by multiplication by the complex number α = M(1). This gives an isomorphism
EndC(C) ∼= C, the map given by M 7→ M(1). In terms of matrices, M is complex
linear if it commutes with multiplication by i:

M ◦ J = J ◦M.

Holomorphic Functions. With the norm |x+iy| =
√
x2 + y2, the complex num-

bers C become a (real and complex) topological vector space. Let Ω be an open
subset and suppose f : Ω→ C.

Definition. We say f is differentiable at a point z ∈ Ω if there exists a continuous
linear map dfz : C→ C, called the derivative of f at z, such that

lim
v→0

f(z + v)− f(z)− dfz(v)

v
= 0.

All normed vector spaces of the same finite dimension are homeomorphic, and
so this limit is independent of the chosen norm. Also note, in finite dimensions all
linear maps are continuous so this condition is perhaps unnecessary.

Definition. A function f : Ω → C is called holomorphic at a point z if there is
a neighborhood of z in which f is differentiable at each point and each derivative
is a complex linear map. The function f is called antiholomorphic if instead the
derivative is antilinear at each point.

If f is antiholomorphic then f̄ = σ◦f is holomorphic since d(σ◦f)z = d(σ)f(z) ◦dfz
is complex linear.

In the holomorphic case we can compute

f(z + wv)− f(z)

w
− dfz(v) =

f(z + wv)− f(z)− dfz(wv)

wv
v → 0

as w → 0 so that the derivative is given by

dfz(v) = lim
w→0

f(z + wv)− f(z)

w
.

Since the derivative dfz is a complex linear map, it is given by multiplication by a
complex number dfz(1). We define df

dz as this number, and it may be computed by

df

dz
= lim
w→0

f(z + w)− f(z)

w
.

In the antiholomorphic case, dfz is antilinear and so a complex linear map C→ C̄.
In this case the above computation becomes

f(z + wv)− f(z)

w̄
− dfz(v) =

f(z + wv)− f(z)− dfz(wv)

wv

wv

w̄
→ 0

as w → 0 so that the derivative is given by

dfz(v) = lim
w→0

f(z + w̄v)− f(z)

w
.
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We consequently define for antiholomorphic functions

df

dz̄
= lim
w→0

f(z + w)− f(z)

w̄
= lim
w→0

f(z + w̄)− f(z)

w
.

Since 1 and i are a real basis, we have functions u, v : Ω → R such that f(z) =
u(z) + iv(z). Now, suppose f is holomorphic at a point z ∈ Ω. Then dfz exists and
is in particular a real linear map C → C. We therefore have duz = Re(dfz) and
dvz = Im(dfz) exist and consequently, the partial derivatives ux, uy, vx, vy exists at
z.

We now find the matrix of this real linear map by computing dfz(1) = f ′(z) and
dfz(i). For x real

dfz(1) = lim
x→0

u(z + x)− u(z)

x
+ i

v(z + x)− v(z)

x
= ux(z) + ivx(z).

A similar computation for y real gives

dfz(i) = lim
y→0

u(z + iy)− u(z)

y
+ i

v(z + iy)− v(z)

y
= uy(z) + ivy(z).

Consequently, the matrix of the real linear map dfz is given by

dfz =

(
ux uy
vx vy

)
,

the partial derivatives evaluated at z. This same matrix is also the representation
of an antilinear dfz since the real vector spaces C and C̄ are the same. In the
complex linear case this matrix must commute with multiplication by i, that is,
dfz ◦ J = J ◦ dfz. This condition simplifies to(

uy −ux
vy −vx

)
=

(
−vx −vy
ux uy

)
.

When dfz is antilinear we have that dfz anti-commutes with J , i.e, dfz◦J = −J◦dfz.
This implies, (

uy −ux
vy −vx

)
=

(
vx vy
−ux −uy

)
.

In summary we have the following system of equations.

Theorem. Suppose f = u + iv is differentiable at z ∈ Ω. If dfz is complex linear
then u and v satisfy the Cauchy-Riemann equations

ux = vy

uy = −vx.

If dfz is complex antilinear then u and v satisfy the Conjugate-Cauchy-Riemann
equations

ux = −vy
uy = vx.
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Define ∂f
∂x = ux + ivx and similarly ∂f

∂y = uy + ivy. For a differentiable function

f : Ω→ C we have the real linear map dfz is given by

dfz(v) =

(
dfz(1)− idfz(i)

2

)
v +

(
dfz(1) + idfz(i)

2

)
v̄

=
1

2

(
∂f

∂x
− i∂f

∂y

)
v +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
v̄

Now if f is holomorphic then

1

2

(
∂f

∂x
− i∂f

∂y

)
=

1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
=
∂u

∂x
+ i

∂v

∂x
=
df

dz

by the Cauchy-Riemann equations, while

1

2

(
∂f

∂x
+ i

∂f

∂y

)
= 0.

Analogously, using the Conjugate-Cauchy-Riemann equations we have

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=
df

dz̄
and

1

2

(
∂f

∂x
− i∂f

∂y

)
= 0.

Using this as a suggestion have the following definition

Definition. On the set of smooth complex valued functions Ω → C we define the
partial derivative opeartors

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Theorem. Suppose f : Ω→ C is smooth. Then

dfz(v) =
∂f

∂z
v +

∂f

∂z̄
v̄.

When f is holomorphic then ∂f
∂z = df

dz and ∂f
∂z̄ = 0. When f is antiholomorphic

then ∂f
∂z̄ = df

dz̄ and ∂f
∂z = 0.

The Complex Exponential. What should the meaning of ez be for z a complex
number? Whatever it means, we should want it to still behave as a homomorphism
ez+w = ezew from the additive group of complex numbers to the multiplicative
group of complex numbers. And, we should want that it reduce to the ordinary ex-
ponential when z is real. And really, it’s not too much to ask that it be holomorphic
as well since the real exponential is smooth.

Let’s assume these stipulations. If we write z = x+ iy then we get ez = ex+iy =
exeiy. Since we’re asking that ex be the ordinary exponential, we really just need
to determine what eiy should be. To do this we will use a property of holomorphic
functions on C which are extensions of smooth functions of R.

Suppose F is a holomorphic extension of a smooth function R→ R. This means
that there is a smooth function f : R→ R such that F |R = f . Now, if z is real, then

F (z) = f(z) is real as well. So we have z̄ = z implies F (z) = F (z). Or equivalently,

z ∈ R =⇒ F (z) = F (z̄).

As it turns out, this equality is true for every z ∈ C when F is holomorphic. This
follows from the Identity Theorem.
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Theorem. Suppose f and g are two holomorphic function defined on an open
and connected set Ω. Then if f(z) = g(z) for all z in some set which has an
accumulation point, then f = g on Ω.

Note that F (z̄) = (σ ◦F ◦σ)(z), where σ is complex conjugation, is holomorphic
since σ itself being linear and antiholomorphic implies that the derivative d(σ ◦
F ◦ σ)z is complex linear. Now, since R has an accumulation point, and since

F (z) = F (z̄) on R, by the Identity Theorem we get that F (z) = F (z̄) on C. Or

written more usefully, F (z̄) = F (z).

Applying this to the complex exponential, we have eiy = e−iy and therefore,
|eiy|2 = eiye−iy = 1. Consequently,

eiy = cos(θ(y)) + i sin(θ(y))

for some function θ of y. By the Inverse Function Theorem applied to cosine, we
get that θ is smooth away from y such that θ(y) = kπ. But the same reasoning
applied to sine gives that θ is smooth at y with θ(y) = kπ. Hence θ is a smooth
function of y.

We have show that for z = x+ iy the holomorphic function ez can be written as

ex+iy = ex cos(θ(y)) + iex sin(θ(y))

for a smooth function θ. By the Cauchy-Riemann equations we have

ex cos(θ(y)) = ex cos(θ(y))θ′(y) and − ex sin(θ(y))θ′(y) = −ex sin(θ(y)).

Both of these together tell us that θ′(y) = 1. Consequently, θ(y) = y + c for some
constant c. To find this constant note that

1 = e0 = cos(c) + i sin(c),

so that c = 2πk for some integer k. But sine and cosine are 2π periodic so we may
take k = 0.

Theorem (Euler’s Formula). The complex exponential is the holomorphic function
with sends z = x+ iy to

ex+iy = ex(cos(y) + i sin(y)).

Note that due to the periodicity of the trig functions, the complex exponential is
not injective since ez = ez+2πik. Hence we cannot expect to have a globally defined
complex logarithm on C− {0}.

Contour Integration. The contour integral of a function f : Ω → C over a
differentiable curve γ : (a, b)→ Ω is defined as∫

γ

f dz =

∫ b

a

f(γ(t))γ′(t) dt.

Writing f(z) = u(z) + iv(z) and γ(t) = x(t) + iy(t) we can compute

f(γ(t))γ′(t) = (u+ iv)(x′ + iy′)

= ux′ − vy′ + i(uy′ + vx′)

= (u− iv) · (x′ + iy′) + i(u− iv) · (y′ − ix′).
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If T and n are the unit tangent and normal vectors to γ, then a computation gives

(f̄ · T )|γ′| = (u− iv) · (x′ + iy′)

(f̄ · n)|γ′| = (u− iv) · (y′ − ix′).
Hence, the contour integral of f along γ is measuring both the circulation and

the flux of the vector field f̄ over γ:∫
γ

f(z)dz =

∫
γ

f̄ · T ds+ i

∫
γ

f̄ · n ds.

As an example, suppose f(z) = 1
z . Then in terms of the real and imaginary

components this is

f(x+ iy) =
x

x2 + y2
+ i

−y
x2 + y2

,

so the conjugate is

f̄(x+ iy) =
x

x2 + y2
+ i

y

x2 + y2
.

When γ is the unit circle, this radial vector field is orthogonal to the unit tangent
vector field T and equal to unit normal n. Hence f̄ · T = 0 and f̄ · n = 1. Thus,∫

γ

1

z
dz = 2πi.

Theorem. Suppose f : Ω→ C is holomorphic and C1 and that γ is a simple closed
curve in Ω that is the boundary of a simply connected disk D. Then the integral of
f over γ is ∫

γ

f(z) dz = 0.

Proof. By Green’s Theorem we get∫
γ

f(z) dz =

∫
γ

f̄ · T ds+ i

∫
γ

f̄ · n ds

=

∫∫
D

−(vx + uy) dA+ i

∫∫
D

(ux − vy) dA,

and these last two integrals vanish by the Cauchy Riemann equations. �

2. Riemann Surfaces

2.1. The Holomorphic Tangent Space. A Riemann surface is a 1 dimensional
complex manifold. Specifically

Definition. A Riemann Surface is a topological space S with an atlas of charts
ϕj : Uj → C whose transition functions ϕk ◦ ϕ−1

j are holomorphic.

Since holomorphic functions are smooth, a Riemann surface structure on S also
gives a smooth surface structure on S. Let X denote the pair S together with a
given holomorphic atlas. Some examples include the Riemann sphere, projective
space, and open subsets of the plane.

A map F : X → Y between two Riemann surfaces is called holomorphic if
ψ ◦ F ◦ ϕ−1 is holomorphic for all admissible charts ϕ on X and ψ on Y . We
want to define tangent vectors to a Riemann surface the same way we defined real
tangent vectors to a smooth surface. That is we want to define them as derivations
of holomorphic functions. The issue is that for compact Riemann surfaces there are
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no non-constant global holomorphic functions. We need to work with the sheaf of
holomorphic functions instead.

The sheaf of holomorphic functions on X is denoted by O. So for each open set
Ω in X, the set O(Ω) is the set of holomorphic functions Ω → C. The stalk of O
at a point p ∈ X is

Op = lim−→O(Ω),

which can be thought of as germs of holomorphic functions at p. The stalk Op is a
complex algebra and so we define the tangent space at p to X to be the complex
derivations of this algebra. That is

Definition. The holomorphic tangent space to X at p, denoted by TpX, is the
set of all derivations v : Op → C. That is, all complex linear maps v such that
v(fg) = v(f)g(p) + f(p)v(g). Note that each function belonging to a point of Op
takes the same value at p and so this abuse of notation is allowed.

If F is a holomorphic function from X to Y , its derivative at p ∈ X is a complex
linear map between the tangent space dFp : TpX → TF (p)Y where the image of a
vector v acts on the stalk of holomorphic functions at F (p) by

dFp(v)f = v(f ◦ F ).

Given a point p ∈ C, the operator d
dz is a tangent vector to C at p, its action

given by
d

dz
f = f ′(p) = lim

z→0

f(p+ z)− f(p)

z
.

In fact, this vector spans the tangent space TpC. This follows since holomorphic
functions are analytic: suppose v ∈ TpC, then

v(f) = v

( ∞∑
n=0

f (n)(p)

n!
(z − p)n

)
= f ′(p)v(z − p) = v(z)

d

dz
f,

so v = v(z) ddz and we see TpC is one dimensional. By sending v to v(z) we also get
a canonical identification of TpC with C itself.

Now, a chart z : U → C on X gives an identification of TpX with Tz(p)C and

therefore, we can send d
dz to X to get a tangent vector d

dz ∈ TpX that acts by

d

dz
f := d(z−1)z(p)

(
d

dz

)
f =

d

dz
(f ◦ z−1) = (f ◦ z−1)′(z(p)),

i.e., by taking the derivative of the coordinate representation of f at the coordinate
representation of p. Again, this vector is a basis for TpX. In particular, thinking
of a chart z as a holomorphic function we see that

d

dz
z = (z ◦ z−1)′(z(p)) = lim

w→0

z(p) + w − z(p)
w

= 1,

as expected.
The holomorphic cotangent space is defined to be the dual space to the holo-

morphic tangent space T ∗pX = (TpX)∗. This is the space of all complex linear
functionals TpX → C. Examples include the derivative of any function holo-
morphic in a neighborhood of p. That is, if f is holomorphic around p then
dfp : TpX → Tf(p)C ∼= C so dfp ∈ T ∗pX. More explicitly, if v ∈ TpX and f is
holomorphic near p then then number dfp(v) ∈ C is

dfp(v) ∼ dfp(v)(z) = v(z ◦ f) = v(f)
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So if we always identify the tangent spaces to C itself then for any holomorphic
function defined near p ∈ X we have dfp(v) = v(f). If z is a chart around p then we
can think of z as a holomorphic function near p and so dzp is a cotangent vector.

It sends the basis vector d
dz to

dzp

(
d

dz

)
=

d

dz
z = 1.

Since the holomorphic tangent space is one dimensional so too is the cotangent
space. Moreover, dzp is a basis.

2.2. The Real Tangent Space. The Riemann surfaceX has an underlying smooth
surface structure S and therefore already has a notion of tangent and cotangent
spaces at a point. Our main interest is how these relate to the just defined holo-
morphic tangent and cotangent spaces.

Let z : U → C be a holomorphic chart. Then writing z = x + iy we get two
real valued functions x, y : U → R smooth on the surface S. Moreover, z provides
a real coordinated chart for S if we interpret it as taking values in the real vector
space C.

Let C∞R be the sheaf of smooth real valued functions on S. So, C∞R (Ω) =
C∞(Ω,R) for Ω an open subset of S. Denoting by (C∞R )p the stalk of this sheaf at
p we have the real tangent space to S at p is all real derivations of this real algebra.

Definition. The real tangent space TpS to S at p is the vector space of all deriva-
tions (C∞R )p → R. This is, all real linear maps that satisfy the product rule.

If z is a holomorphic coordinate chart around p then ∂
∂x and ∂

∂y are real tangent

vectors at p and span TpS. The real cotangent space is T ∗p S = (TpS)∗, the space
of real linear maps TpS → R. It is spanned by dx and dy. Our main goal is to
determine how the real and holomorphic tangent and cotangent spaces are related.

We cannot hope that the underlying real vector space of TpX be equal to TpS
since they consists of derivations of different algebras. If v ∈ TpX then v : Op → C
while if v ∈ TpS then v : (C∞R )p → R. However, we may extend the action of v ∈ TpS
to Op by linearity. That is, if f+ig ∈ Op then we can define v(f+ig) = v(f)+iv(g).
Asking for this extension to be a complex linear map is equivalent to taking the
complexification of TpS.

Consider TpS⊗C. This is a complex vector space of dimension dimC(TpS⊗C) =
dimR(TpS) = 2dimC(TpX). There is a useful isomorphism

TpS ⊗ C = DerR(C∞R )p ⊗ C ∼= DerC(C∞C )p

of the complexified real derivations with complex derivations of the stalk of the sheaf
C∞C of smooth complex valued functions on S, where v ⊗ z acts on f + ig ∈ (C∞C )p
by

(v ⊗ z)(f + ig) = z(v(f) + iv(g)).

Since holomorphic functions near p are also smooth functions near p we have the
inclusion Op ↪→ (C∞C )p and thus a map ϕ : TpS ⊗ C → TpX by restricting the
derivation. Note that

TpS ⊗ C/ kerϕ = imϕ.

Therefore, we can investigate this map by finding a decomposition of TpS⊗C that
helps us understand this quotient. It turns out that the complex manifold structure
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X on S induces an almost complex structure J on S with respect to which we can
decompose TpS ⊗ C into eigenspaces.

2.3. The Almost Complex Structure. Recall that J : C→ C is the real linear
map given by multiplication by i. In particular it satisfies J2 = −Id, so it is an
almost complex structure on the real vector space C. Under the identifications of
the real tangent spaces to C with the real vector space C itself, we have that J
gives an almost complex structure on the smooth surface C.

Let p ∈ S and z a holomorphic coordinate around p. Then d(z−1)z(p) gives a
real isomorphism C ∼= Tz(p)C → TpS. So, we can pull back the almost complex
structure J on Tz(p)C to TpS using this chart. That is, define the almost complex

structure J̃ on TpS by

J̃ = d(z−1)z(p) ◦ Jz(p) ◦ dzp.

This almost complex structure is independent of the chosen holomorphic coordinate
chart specifically since the chart is holomorphic. Indeed, suppose w is another
holomorphic chart around p and denote by J̃z and J̃w the almost complex structures
on TpS defined as above. Then since the transition function w ◦ z−1 is holomorphic
we have that d(w ◦ z−1)z(p) is complex linear and so d(w ◦ z−1)z(p) thought of as a

real linear map commutes with J ; i.e, d(w ◦ z−1)z(p) ◦Jz(p) = Jw(p) ◦ d(w ◦ z−1)z(p).
Hence,

J̃w = d(w−1)w(p) ◦ Jw(p) ◦ dwp
= d(w−1)w(p) ◦ d(w ◦ z−1)z(p) ◦ Jz(p) ◦ d(z ◦ w−1)w(p) ◦ dwp
= d(z−1)z(p) ◦ Jz(p) ◦ dzp
= J̃z.

And so we have a well defined almost complex structure on TpS that is induced by
the complex structure X on S.

More specifically we have J : TpS → TpS is real linear and J2 = −Id. So while
J has no real eigenvalues as a map on TpS, we can extend it to the complexification
J : TpS ⊗C→ TpS ⊗C where it will have eigenvalues ±i. Therefore, we can write

TpS ⊗ C = T 1,0
p X ⊕ T 0,1

p X,

where T 1,0
p X is the +i eigenspace and T 0,1

p X is the −i eigenspace. The direct sum
decomposition is given by

v =
1

2
(v − iJ(v)) +

1

2
(v + iJ(v)).

Consider the inclusion (TpS, J) ↪→ TpS ⊗ C. Then J(v) maps to

J(v) 7→ i
1

2
(v − iJ(v)) + (−i)1

2
(v + iJ(v)).

So we see that the map (TpS, J)→ (T 1,0
p X, i) is a complex linear isomorphism (by

counting dimensions).
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2.4. The Identifications. Now choose a holomorphic coordinate z near p, which
in turn induces real coordinates (x, y) near p. Then if we follow J through the
identification Tz(p)C ∼= C we see that J

(
∂
∂x

)
= ∂

∂y . Then under the isomorphism

just discussed, the complex basis of (TpS, J), ∂
∂x , maps to

∂

∂x
7→ 1

2

(
∂

∂x
− i ∂

∂y

)
in T 1,0

p X. This is then a complex basis for (T 1,0
p X, i). We suggestively define

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
.

What is the image of ∂
∂z under the restriction map TpS⊗C→ TpX? Let f = u+ iv

be holomorphic near p. Then

∂

∂z
f =

1

2

(
∂

∂x
− i ∂

∂y

)
(u+ iv)

=
1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
=
∂u

∂x
+ i

∂v

∂x
=

d

dz
f

by the Cauchy-Riemann equations. So we see that ∂
∂z = d

dz on holomorphic
functions. In particular, the restriction map TpS ⊗ C → TpX is surjective, with
T 1,0
p X → TpX a complex isomorphism.

What is the kernel of this map? The basis vector ∂
∂x projects to

∂

∂x
7→ 1

2

(
∂

∂x
+ i

∂

∂y

)
in T 0,1

p X, which we define as

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

This is a real linear isomorphism TpS ∼= T 0,1
p X and a complex anti-linear iso-

morphism (TpS, J) ∼= (T 0,1
p X, i). What is the image of ∂

∂z̄ under the restriction
TpS ⊗ C→ TpX? Again, let f = u+ iv be holomorphic near p. Then

∂

∂z̄
f =

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) =

1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

))
= 0.

That is, ∂
∂z̄ spans the kernel of the restriction map.

What do real tangent vectors v ∈ TpS look like under the inclusion TpS ↪→
TpS ⊗ C? Let v = a ∂

∂x + b ∂∂y . Then

a
∂

∂x
+ b

∂

∂y
7→ (a+ ib)

∂

∂z
+ (a− ib) ∂

∂z̄
.

Consequenlty, real tangent vectors in TpS ⊗ C are of the form v = w ∂
∂z + w̄ ∂

∂z̄ for

some complex number w. And, under the identification TpX ∼= T 1,0
p X, holomorphic

tangent vectors are of the form w ∂
∂z .

Put all together we get the following.
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Theorem. The vector space T 1,0
p X is complex isomorphic to TpX via the natural

restriction map. Moreover, in a holomorphic coordinate chart z around p we have
∂
∂z when restricted to holomorphic functions near p is equal to d

dz . The vector ∂
∂z̄

annihilates holomorphic functions near p; i.e., ker ∂
∂z̄ = Op.

Since z is holomorphic, we get ∂
∂z z = d

dz z = 1 and ∂
∂z̄ z = 0, as expected. The

conjugate function z̄ is not holomorphic, so we compute

∂

∂z
z̄ =

1

2

(
∂

∂x
− i ∂

∂y

)
(x− iy) = 0

and
∂

∂z̄
z̄ =

1

2

(
∂

∂x
+ i

∂

∂y

)
(x+ iy).

This justifies the notation for ∂
∂z̄ . Because of these identifications, we may use

complex notation even when the objects we are considering are real. We can do
this by making the substitutions x = 1

2 (z + z̄) and y = 1
2i (z − z̄). Then functions

of (x, y) we may regard as functions of (z, z̄). For example, Re(x + iy) = x we
may regard as Re(z, z̄) = 1

2 (z + z̄). Then, by identifying v = a ∂
∂x + b ∂∂y with

(a+ ib) ∂∂z + (a− ib) ∂∂z̄ , the action of v on Re can be computed by

v(Re) =

(
(a+ ib)

∂

∂z
+ (a− ib) ∂

∂z̄

)(
1

2
(z + z̄)

)
= a.

as expected from
(
a ∂
∂x + b ∂∂y

)
x = a.
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